The disadvantages of being a hybrid during drought: A combined analysis of plant morphology, physiology and leaf proteome in maize
نویسندگان
چکیده
A comparative analysis of various parameters that characterize plant morphology, growth, water status, photosynthesis, cell damage, and antioxidative and osmoprotective systems together with an iTRAQ analysis of the leaf proteome was performed in two inbred lines of maize (Zea mays L.) differing in drought susceptibility and their reciprocal F1 hybrids. The aim of this study was to dissect the parent-hybrid relationships to better understand the mechanisms of the heterotic effect and its potential association with the stress response. The results clearly showed that the four examined genotypes have completely different strategies for coping with limited water availability and that the inherent properties of the F1 hybrids, i.e. positive heterosis in morphological parameters (or, more generally, a larger plant body) becomes a distinct disadvantage when the water supply is limited. However, although a greater loss of photosynthetic efficiency was an inherent disadvantage, the precise causes and consequences of the original predisposition towards faster growth and biomass accumulation differed even between reciprocal hybrids. Both maternal and paternal parents could be imitated by their progeny in some aspects of the drought response (e.g., the absence of general protein down-regulation, changes in the levels of some carbon fixation or other photosynthetic proteins). Nevertheless, other features (e.g., dehydrin or light-harvesting protein contents, reduced chloroplast proteosynthesis) were quite unique to a particular hybrid. Our study also confirmed that the strategy for leaving stomata open even when the water supply is limited (coupled to a smaller body size and some other physiological properties), observed in one of our inbred lines, is associated with drought-resistance not only during mild drought (as we showed previously) but also during more severe drought conditions.
منابع مشابه
پاسخ عملکرد دانه هیبریدهای ذرت به تنش خشکی در مراحل مختلف رشد
Drought stress is the most important limiting factor in crop plants including maize (Zea mays L.), which is the third important world crop after wheat and rice. Water deficiency at different growth stages affects maize yield differently. To examine the response of four maize hybrids to drought stress at different growth stages, a field experiment was carried out as a split plot based on complet...
متن کاملEvaluation of Leaf Proteome in Wheat Genotypes Under Drought Stress
Drought stress in plants, the change (increase or decrease) in the production of plant proteins. Proteomics in recent years one of the most powerful tools that help us to study the changes in protein In order to investigate the proteome of wheat leaves in response to terminal drought, two genotypes susceptible and resistant wheat genotypes were evaluated under irrigated (non-stress) and rain-fe...
متن کاملEvaluation of Leaf Proteome in Wheat Genotypes Under Drought Stress
Drought stress in plants, the change (increase or decrease) in the production of plant proteins. Proteomics in recent years one of the most powerful tools that help us to study the changes in protein In order to investigate the proteome of wheat leaves in response to terminal drought, two genotypes susceptible and resistant wheat genotypes were evaluated under irrigated (non-stress) and rain-fe...
متن کاملPlant Responses to Individual and Combined Effects of Abiotic Stresses: Lycium depressum L. Vegetative Parameters under Salinity and Drought
Lycium depressum L. is the only native tree-like life-form species inhabited in saline and alkaline regions of Turkmen Sahra located at Golestan province in Northern Iran. During past years, efforts have been made to increase vegetation cover of the area by cultivation of L. depressum L. to reduce water and wind erosions and dust storm challenges; however, the cultivation of t...
متن کاملAgronomic and Photosynthetic Characteristics of Different Maize Hybrids in Response to Water Deficit Stress at Different Phenological Stages
The aim of present study was to evaluate the effects of drought stress on net photosynthesis rate (Pn), stomatal resistance, water use efficiency (WUE) and biomass (BM) of six maize (Zea mays L.) hybrids. Drought stress applied by withholding water supply at 4-5 leaf stage (S1, vegetative stage), anthesis (S2, reproductive stage), and dual stress condition (S3, combination of vegetative and rep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017